

Fossil Record as an Environmental Chronometer

R. Nagendra¹ and A. Nallappa Reddy^{2*}

¹Mahaveer Zephyr Apartments, Bangalore-560076

²Majestic shore Apartments, Chennai-600094

*Corresponding author: anreddy54@gmail.com

ABSTRACT

The fossil record of four billion years of interactions between the biosphere and planetary systems, is an essential archive of Earth's environmental history. To demonstrate the value of fossilized biota and stratigraphic records as temporal frameworks for reconstructing paleoclimates, atmospheric evolution, sea-level variability, and tectonic processes, this review synthesizes evidence from these sources. Examined are significant changes in the environment and evolution, such as the Paleozoic terrestrialisation of plants, the rapid diversification of life during the Cambrian Explosion, and the Great Oxygenation Event as documented by Banded Iron Formations. The "Big Five" mass extinction events receive distinct attention, with a thorough analysis of the Permian–Triassic extinction and the ongoing discussion of the Cretaceous–Paleogene boundary, evaluating conflicting theories about large-scale volcanism and extraterrestrial impact. The fossil record clarifies the reciprocal relationship between biological evolution and Earth system dynamics by combining several paleoenvironmental proxies, including isotopic signatures in foraminifera, ice-core records, and palaeobotanical data. This deep-time viewpoint emphasizes that though Earth systems are resilient to severe disruptions, biospheric recovery takes place over millions of years. This is vital context for understanding the extent and possible repercussions of the current anthropogenic climate change and the accelerating loss of biodiversity.

ARTICLE HISTORY

Received: 03 September 2025

Revised: 06 November 2025

Accepted: 28 November 2025

KEYWORDS

Fossil record

mass extinctions

paleoclimate

environmental change

Great Oxygenation Event

K-Pg boundary

plate tectonics

deep time

I. INTRODUCTION

Earth's history is recorded in geological strata and fossilized remains of past organisms. These biological records provide a temporal framework for reconstructing major environmental transitions and their biological consequences, documenting the interactions among the geosphere, atmosphere, hydrosphere, and biosphere across billions of years. Biological evolution has not merely responded to environmental change but has actively modified Earth's systems. Photosynthetic organisms transformed atmospheric composition, while terrestrial plant colonization altered global carbon cycles and climate patterns. This article examines the fossil record as an environmental chronometer that reveals past climates, atmospheric compositions, sea-level fluctuations, and tectonic shifts. The environmental changes influenced evolutionary innovations and mass extinctions, emphasizing the relevance of deep-time perspectives for understanding contemporary environmental challenges are discussed.

2. ARCHIVE OF LIFE'S HISTORY

The fossil record comprises chronologically preserved remains and traces of organisms, documenting the history of life on Earth. It reveals the origins, evolution, and extinction of species across geological time, spanning nearly 4 billion years. Fossils form through several processes; permineralization, casts, and molds, each providing distinct insights into ancient organisms and their environments. This record enables scientists to trace evolutionary lineages and identify patterns of biodiversification and extinction in relation to major geological events. However, the fossil record is inherently incomplete. Taphonomy, the scientific study of processes affecting organic remains from death through fossilization (including decomposition, transport, and diagenesis), helps explain these gaps.

3. GAPS IN THE HISTORICAL ARCHIVE

- i. Rarity of fossilization – Fossilization probability is extremely low, typically requiring rapid burial in environments with active sedimentation.
- ii. Biological bias – Organisms with hard parts (shells, bones, woody tissues) preserve far more readily than soft-bodied organisms, creating taxonomic bias in the record.
- iii. Geological processes – Erosion, tectonic activity, and metamorphism continuously destroy or obscure portions of the fossil and geological record. The Great Unconformity represents a missing 1.5 billion years of geological history due to extensive erosion.
- iv. Human factors – Many fossils remain undiscovered, while numerous collected specimens anticipate complete study and description.

4. RECONSTRUCTING PAST ENVIRONMENTS

The incompleteness of the fossil record, reconstructing past environments requires a multi-proxy, correlative approach. Scientists study short, localized intervals of the geologic record and compare them with equivalent intervals across the globe. The index fossils serve as key tools in this process. These organisms are valuable in biostratigraphy because they were geographically widespread, abundant, and geologically short-lived, making them reliable markers for correlating rock layers across regions. Once combined with radiometric dating (providing absolute ages) and geochemical and biological proxies, researchers can build a more complete chronological framework (Gradstein et al., 2020). Integrating these lines of evidence allows scientists to overcome site-specific gaps and develop a robust understanding of Earth's history and life's evolution.

4.1 Dating methods

The accurate environmental reconstruction depends on reliable dating techniques. The radiometric methods provide absolute ages for rock layers and fossils, establishing a numerical framework for organisms once lived. The biostratigraphy employs index fossil species—widespread, abundant, and geologically short-lived, to provide precise relative dating and enable correlations between rock layers in different regions. By recognizing these marker fossils, geologists can assemble a detailed geological timeline, deepening understanding of both regional patterns and global transformations in Earth's history.

4.2 Precambrian Era

The Precambrian supereon (Hadean, Archean, and Proterozoic Eons) covers most of Earth's history, extending from planetary formation around 4.57 billion years ago (Ga) to roughly 541 Ma. During this span, Earth underwent profound environmental shifts that established essential foundations for complex life.

4.3 Hadean and Archean Eons

The Hadean Eon began with Earth's formation about 4.57 Ga and lasted until roughly 4.1 Ga, followed by the Archean Eon (4.0 to 2.8 Ga). Isotopic evidence suggests first traces of life may have appeared as early as 4.2 Ga in the Hadean, while more conclusive signs of primitive, single-celled prokaryotes emerge between 3.8 and 3.5 Ga. Modern bacteria are considered descendants of these early microbes. Throughout both eons, life remained exclusively unicellular, while Earth's crust and atmosphere evolved dramatically.

4.4 Proterozoic Eon

The Proterozoic Eon witnessed one of Earth's most significant environmental transformations: the rise of atmospheric oxygen, known as the Great Oxygenation Event (Holland, 2002). Around 2.5 Ga, atmospheric oxygen levels increased substantially, reshaping surface environments and enabling more complex life forms.

4.4.1 Banded Iron Formations (BIFs) as evidence

Banded Iron Formations provide geological evidence of this transition. These sedimentary rocks display alternating layers of iron oxides and silica-rich chert, directly recording the oxygenation state of Earth's early oceans. BIFs formed in seawater as oxygen released by photosynthetic cyanobacteria reacted with dissolved iron. By about 3.4Ga, these microbes had become widespread, forming extensive mats known as stromatolites. Through photosynthesis, they generated oxygen that reacted with dissolved iron in ancient oceans, producing insoluble iron oxides that precipitated and accumulated into thin, rhythmic layers. Each band marks cyclic fluctuations in oxygen production. The chemical signature of BIFs supports this interpretation. Iron within BIFs occurs in both oxidized ferric (Fe^{3+}) and reduced ferrous (Fe^{2+}) forms, with magnetite typically main evidence of progressive oxidation. Chemically, BIFs consist of iron oxides, silica, and minor carbonates. Their exceptional hardness, density, erosion resistance, and fine layering across vast regions indicate deposition in low-energy, deep-water environments largely unaffected by waves or currents, consistent with a global-scale oxygenation process. BIFs represent a fossilized chemical archive of planetary environmental shift driven by early life. Though not biological fossils, their alternating bands directly record fluctuations in oxygen availability in ancient oceans oxygen generated by cyanobacteria. The shift from Fe^{2+} to Fe^{3+} preserved in these rocks serves as a clear geochemical marker of the Great Oxidation Event, demonstrating how biology can fundamentally alter planetary chemistry. Although BIFs around 2.5Ga mark an initial oxygen rise, evidence from black shales and pillow basalts indicates the deep ocean remained largely anoxic until much later (540 to 420Ma). This prolonged deep-ocean anoxia following the GOE indicates a multi-stage oxygenation process. Atmospheric oxygen increased after the GOE, but remained insufficient to fully oxygenate the global ocean. This delay likely restricted complex, oxygen-demanding life to shallow, oxygenated waters, shaping the pace and character of later evolutionary radiations. Supporting this interpretation, the oxidation state of iron in pillow basalts shows clear signs of significant oxidation only between ~540 and 420Ma, reflecting atmospheric oxygen levels approaching modern values.

4.5 Ediacaran Period

The Ediacaran Period, closing the Proterozoic Eon is notable for the first well-preserved fossils of multicellular animals. The seas hosted soft-bodied organisms including worm-like creatures, sponges, and early forms that preceded trilobites. Often termed the "Age of Early Life," this period saw complex organisms restricted to oceans, while land surfaces remained barren.

4.6 Paleozoic Era

The Paleozoic Era witnessed dramatic biodiversity increases, the first major colonization of land by plants and animals, and profound shifts driven by climate change and tectonic activity.

4.7 Cambrian Period

The Cambrian Period, opening the Phanerozoic Eon, is marked by the "Cambrian Explosion" a remarkable interval of rapid evolutionary diversification during which most modern animal phyla first appeared. The causes remain debated. One leading explanation points to oxygenation. Evidence suggests a relatively small but crucial rise in oxygen levels in Earth's atmosphere and shallow oceans around 540Ma may have triggered biodiversity expansion. While the deep ocean remained largely anoxic until about 400Ma, shallow marine environments where most early animal life thrived were sufficiently oxygenated through wind- and wave-driven mixing. These findings challenge older theories assuming a massive oxygen surge was necessary. Instead, modest environmental changes drove ecosystems across critical thresholds, unleashing major biological transformations. The key was reaching "sufficient oxygen" to support complex life, not necessarily modern oxygen levels. An alternative explanation emphasizes ecological interactions. The emergence of new species interactions especially predation drove an evolutionary arms race. Traits such as teeth, claws, and protective shells evolved as adaptations for attack or defense, while innovations like jaws enabled animals to exploit new food sources. In a world once dominated by soft-bodied creatures grazing on microbial mats, these novel

interactions may have catalyzed the sudden rise of ecological and morphological complexity defining the Cambrian Explosion.

4.8 Ordovician and Silurian Periods

The Ordovician period (approximately 490–445Ma) succeeded the Cambrian and witnessed remarkable invertebrate diversification. Marine ecosystems flourished, dominated by trilobites, cephalopods, corals, brachiopods, and graptolites. The first fossilized coral reefs appeared soon after, in the Silurian. One of the most transformative Paleozoic events was land colonization. Evidence suggests this was not a single occurrence but a gradual, multi-stage process with different groups adapting to terrestrial environments over time. The earliest steps likely involved microbial mats, especially cyanobacteria, thriving along shorelines (though their record is primarily chemical rather than structural). Fungi followed, with probable Ascomycete fossils preserved in Silurian deposits. Plants were central to this transition. The Ordovician records the earliest movement of green plants onto land, culminating in the Silurian with vascular plants such as *Cooksonia*. These small, branching plants bore sporangia at their tips but lacked true leaves, and in some cases, even vascular tissue. Their presence reshaped terrestrial environments, initiating soil formation and creating niches for other life forms. Presently afterward, terrestrial animals appeared, including early relatives of spiders and centipedes. Each wave of colonization modified the landscape, enabling subsequent groups to thrive. This stepwise progression reflects co-evolutionary relationships between organisms and the developing land biome, ultimately laying the foundation for complex terrestrial ecosystems and, much later, herbivore evolution. The Ordovician concluded with a major ice age. In its aftermath, the Silurian brought more stable global climate, ending earlier erratic fluctuations. As vast glaciers melted, sea levels rose significantly, flooding continental margins and creating extensive new marine environments. Warm, shallow seas (tropical to subtropical) spread across much of equatorial land, where coral mound reefs flourished.

4.9 Devonian Period

The Devonian Period is often called the "Age of Fishes" due to remarkable fish diversification, including the rise of jawed species and the emergence of the first bony fish (Osteichthyans). Equally transformative was plant life expansion on land. By the Devonian's close, vegetation had spread widely, creating landscapes structurally resembling those of today. This botanical radiation introduced key evolutionary innovations: advanced fluid transport systems (xylem), lignin for rigidity, and diverse leaves and roots. The Middle Devonian witnessed the earliest trees, such as the progymnosperm *Archaeopteris*, which formed Earth's first true forests. These towering plants, reaching over 30m. in height, anchored themselves with vast root networks and reshaped terrestrial ecosystems globally. The Devonian plant hypothesis illustrates biological feedback shaping Earth's climate and driving a major cooling event. During the Devonian, widespread expansion of deep-rooted vascular plants greatly accelerated silicate weathering, a geological process removing atmospheric CO₂ and storing it in oceans and seabed. This intensified weathering led to a studied atmospheric CO₂ decline, from roughly 6,300ppm to about 2,100ppm by volume. The sharp greenhouse gas reduction contributed to a mid-Devonian global temperature drop of approximately 5°C and helped trigger the Late Paleozoic ice age. This episode demonstrates that the evolutionary innovations in biology can fundamentally reshape global biogeochemical cycles and act as long-term climate regulators. Additionally, vascular plant rise transformed the hydrological cycle and influenced global ecosystems, creating complex vegetative layers that supplied food and shelter for diverse habitats.

4.10 Carboniferous and Permian Periods

During the Carboniferous Period, Britain lay close to the equator, covered by warm, shallow seas depositing limestones rich in corals, brachiopods, and trilobites. Later, vast coastal swamps developed, dominated by towering ferns and horsetails, leaving behind layers of sandstone, mudstone, and coal. This era also saw giant predatory insects rise, including dragonflies with wingspans exceeding 60cm.

The Permian period witnessed the supercontinent Pangaea's assembly, giving rise to major mountain ranges such as the Appalachians. Glaciation that had begun in the late Carboniferous ended during this time. A key vertebrate evolutionary advance was the amniotic egg, enabling reptiles, birds, and mammals to reproduce entirely on land. By the transition from Carboniferous to early Permian, the first herbivorous tetrapod had also appeared (Fig. I).

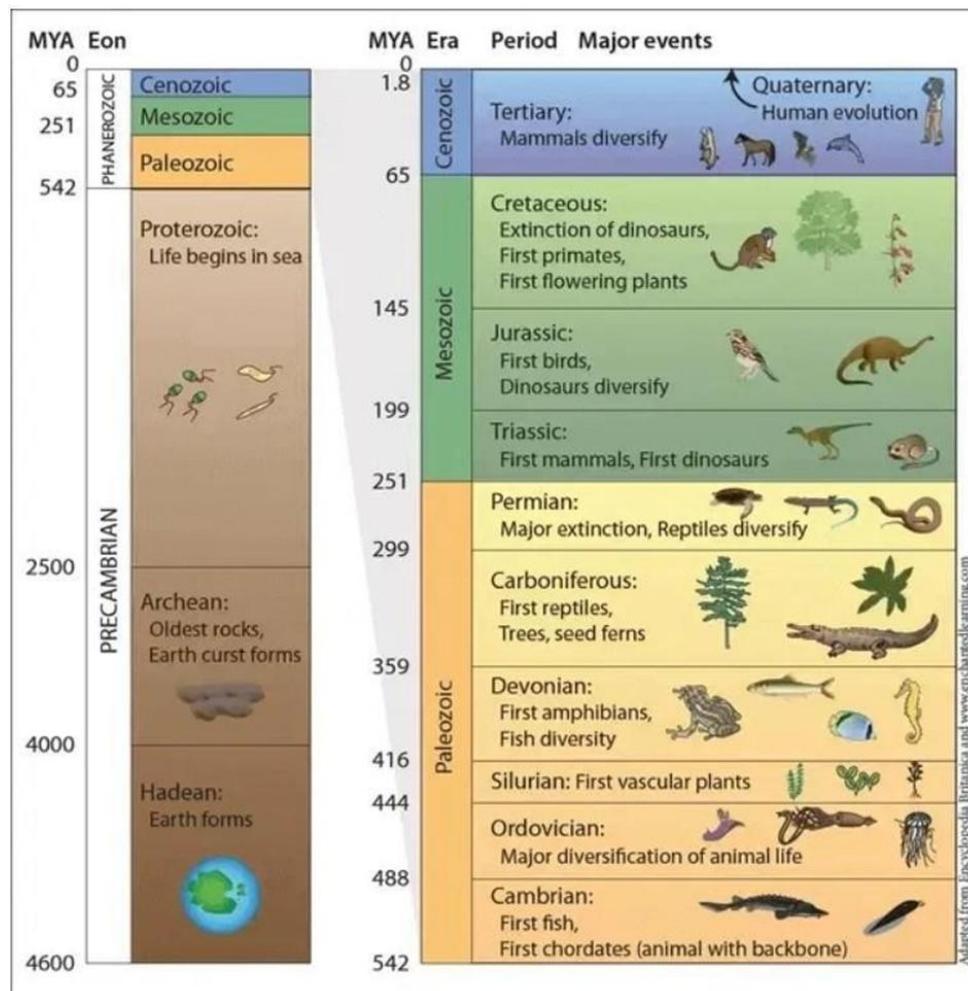


Figure I. Geological time scale with major events (Source: Encyclopedia Britannica and www.enchantedlearning.com)

5. MASS EXTINCTIONS OF THE PALEOZOIC

The Paleozoic Era experienced several major mass extinction events, the "Big Five" during which extinction rates rose far above normal background levels (Raup and Sepkoski, 1982).

5.1 Ordovician-Silurian Extinction

The Ordovician-Silurian extinction marked the first major mass extinction in Earth's history, eliminating around 71% of existing species, predominantly marine. The event is widely linked to silicate weathering. Silicate minerals in Earth's crust act as natural carbon sinks, removing atmospheric CO₂. When this process intensifies (potentially influenced by continental arrangement), it can lower atmospheric CO₂ levels, cool the planet, and initiate glaciation. Expanding ice sheets trap water and lower sea levels, while also slowing further weathering. This allows CO₂ to accumulate again, warming the planet and melting ice. The resulting cooling and warming cycles, alongside sharp sea

level changes, placed enormous stress on marine ecosystems. The Ordovician–Silurian extinction shows that Earth's natural chemical cycles can slowly but steadily drive major climate changes and wipe out vast numbers of species.

5.2 Late Devonian Extinction

The Late Devonian extinction eliminated roughly 70% of marine species but is considered one of the less severe major mass extinctions. Unlike sudden catastrophes, it unfolded gradually over millions of years. While extinction rates were only slightly elevated, new species emergence sharply declined. These shifts were likely driven by overlapping environmental stressors such as global warming and ocean anoxia (oxygen depletion). Ocean anoxia may have resulted from increased nutrient runoff from continents, fueling massive algal blooms that depleted oxygen levels.

5.3 Permian-Triassic Extinction

The Permian-Triassic extinction, commonly termed the "Great Dying," represents the most severe mass extinction in Earth's history. Occurring around 252 Ma ago, it eliminated at least 80% of marine invertebrate species and roughly 70% of terrestrial vertebrate species, potentially wiping out over half of all animal families. This catastrophic event is largely attributed to massive volcanic eruptions in present-day Siberia, which created the vast region known as the Siberian Traps. These eruptions released enormous amounts of sulfur dioxide and CO₂ into the atmosphere, driving an estimated 8°C global temperature rise. Elevated ocean temperatures likely proved fatal for many marine organisms. Atmospheric CO₂ levels are believed to have surged from roughly 400ppm to 2,500ppm, injecting between 3,900 and 12,000 gigatons of carbon into the ocean-atmosphere system. This massive carbon influx probably triggered significant ocean acidification, although geochemical evidence remains inconsistent. The oceans also experienced widespread anoxia or euxinia that combined with higher temperatures reducing oxygen solubility, created severe stress for marine life. Additional factors potentially contributing to the extinction include methane clathrate release, increased aridity, and ozone depletion. Fossil records from the period show marked increases in marine and terrestrial fungi, indicative of widespread organismal death and decay. The Permian-Triassic extinction was not the result of a single cause but rather a convergence of interconnected environmental stressors, primarily fueled by massive volcanic activity. The immense CO₂ release drove global warming and ocean acidification. Warming further reduced oxygen solubility in seawater, intensifying ocean anoxia and creating a deadly positive feedback loop where one stressor amplifies another. The scale of carbon release and its environmental consequences serve as a deep-time analogue for modern anthropogenic climate change, emphasizing the risk of catastrophic biodiversity loss when critical ecological thresholds are breached.

5.4 Mesozoic Era

The Mesozoic Era, known as the "Age of Reptiles," lasted from about 252 to 66 Ma. It was marked by the rise and dominance of dinosaurs, major shifts in continental positions, and ended with one of the well-known mass extinctions in Earth's history.

5.5 Triassic Period

The Triassic Period marked dinosaur rise as dominant land animals. Reptiles were widespread, and the first small, rodent-like mammals also emerged. The climate was largely hot and arid, resulting in the accumulation of sandstones, salts, and mudstones within deserts, river systems, and shallow lakes.

5.6 Jurassic Period

During the Jurassic Period, dinosaurs remained dominant land animals, while mammals, though more widespread, were still relatively small. The first birds and lizards also appeared during this time. In the oceans, ammonites thrived in abundance. Geologically, the supercontinent Pangaea began fragmenting into Gondwana and Laurasia (now Britain). Shallow tropical seas covered much of the land, leading to mudstone, limestone, and sandstone deposition.

5.7 Cretaceous Period

The Cretaceous Period was marked by diverse dinosaur species and plentiful marine invertebrates, including rudist bivalves. Accelerated plate tectonic activity created shallow ocean basins and elevated sea levels, causing inland seas to spread across central North America.

5.8 The Cretaceous-Paleogene (K-Pg) Extinction Event

The Cretaceous period ended, marking the Cenozoic Era's beginning. The Cretaceous– Paleogene (K-Pg) boundary marks a mass extinction event that eliminated 60–75% of marine species and terrestrial dinosaurs.

5.8.1 Evidence for Asteroid impact hypothesis

Luis Alvarez and colleagues hypothesized that the fifth mass extinction, including dinosaurs at the Cretaceous-Paleogene boundary, was primarily due to extraterrestrial impact (Alvarez et al., 1980). The K-Pg extinction event is widely attributed to a giant asteroid impact. This impact, which left the Chicxulub crater in the Yucatan Peninsula, Mexico, is considered the primary cause of non- avian dinosaur extinction and many other marine species losses. The impact triggered massive environmental changes, including global wildfires, tsunamis, and a prolonged period of darkness and cold caused by dust and debris ejection into the atmosphere. This drastically altered Earth's climate and disrupted ecosystems, leading to mass extinction. Evidence supporting this theory includes an iridium layer in the geological record enriched in extraterrestrial material, and the impact crater's discovery itself.

5.8.2 Chicxulub Crater

The discovery of the 180 km wide Chicxulub crater on the Yucatán Peninsula in the Gulf of Mexico provided additional evidence that K-Pg boundary clay represented PGE debris from a massive asteroid impact. Drilling into the Chicxulub peak ring confirmed it comprised granite ejected from deep within Earth within minutes of impact and contained hardly any gypsum, suggesting the gypsum vaporized and dispersed as aerosols into the atmosphere.

6. SKEPTICISM TOWARD THE SINGLE-CAUSE IMPACT HYPOTHESIS

A substantial number of paleontologists and geophysicists remain skeptical that a single extraterrestrial impact event was solely responsible for the mass extinction at the K-Pg boundary. Grzegorz Racki (Racki, 2012) critically assessed the single-cause impact scenario, emphasizing that its application to the complex fossil record has often resulted in forced interpretations due to three major issues:

- i. Factual misidentification- erroneous recognition of purported extraterrestrial markers in sedimentological, physical, or geochemical contexts.
- ii. Correlative misinterpretation-inaccurate temporal correlations caused by misdating of authentic impact signatures.
- iii. Causal overestimation—overinterpretation of impact characteristics that may not suffice to trigger global-scale biotic catastrophe

Racki further proposed that reported iridium anomalies at major extinction horizons may be attributed to terrestrial processes such as volcanic-hydrothermal emissions, sedimentary starvation, redox fluctuations, and diagenetic enrichment (Racki, 2012). For example, in the Late Devonian Long Rapids Formation of western Canada, iridium enrichment (4 ppb) occurs approximately 85cm below the Frasnian–Famennian (F–F) extinction boundary, while platinum-group element anomalies and microtektites appear either 1.5 Ma postdating or stratigraphically below the boundary. Collectively, most Phanerozoic biotic crises exhibit less pronounced catastrophic signatures than the impact-driven K-Pg event. Consequently, many researchers now view temporally constrained correlations between large igneous province emplacement and mass extinction episodes as more convincing explanations than simplistic impact-catastrophism models.

7. AGE OF CHICXULUB IMPACT

Studies of the Mullinax-I core and Brazos River outcrops reveal that the Chicxulub impact predates the K-Pg mass extinction by about 200,000 years. The actual K-Pg boundary, marked by a negative $\delta^{13}\text{C}$ shift and the first appearance of Danian microfossils, lies 80cm above the main impact event deposit. The interval between them reflects shallow, low-oxygen conditions in the latest Maastrichtian, indicated by stressed microfossil assemblages, small shells, and frambooidal pyrite-filled burrows. The impact event deposit itself consists of a basal conglomerate with clasts containing reworked impact spherules, fining-upward spherule-rich sands, and storm-generated structures such as hummocky cross-bedding and laminated sands. Burrows and erosion surfaces suggest it represents a series of storm deposits rather than a single tsunami deposit. Importantly, the original Chicxulub ejecta layer is preserved 40cm below this event deposit, as a 3cm thick yellow clay rich in smectite (altered impact glass) and rare spherules chemically identical to Chicxulub ejecta from Mexico and Haiti. Its stratigraphic position near the base of foraminiferal zone CFI shows the impact occurred roughly 200 kyr before the end-Cretaceous extinction. The Brazos sections support evidence from NE Mexico and the Chicxulub crater core that the impact did not coincide with the K-Pg boundary, implying the mass extinction was driven by other environmental factors. The Brazos sedimentary sections in Texas, near the Chicxulub crater, are a critical site for studying the K-Pg mass extinction event, as the distinct geological feature known as the “event deposit (ED)” is found there. The outcrop CMA-B appears to be an ideal section, displaying the various sediment layers deposited in vertical succession during the Late Cretaceous. The lower, weakly bedded claystone and mudstone of dark grey color contain burrows and shells. This is followed by a yellow clay layer containing weathered Chicxulub impact glass, which is overlain by weakly bedded mudstone and claystone with burrows and shells. The overlying claystone concretions and mudstone clasts with spherules have an erosional surface at their base. The overlying unit is a fining-upward calcareous claystone, followed by calcareous mudstone containing burrows, shells, and microfossils. This unit is finally overlain by grey claystone and marl containing burrows and microfossils. Repeated, truncated, and frequently burrowed sandstone units are known as event deposits, indicating storm deposition. Stratigraphically, this unit (ED) occurs \sim 40cm below the K-Pg boundary defined based on the first occurrence of Danian planktic foraminifera, nannofossil *Micula prinsii* (NPI zone) boundary and negative shift of $\delta^{13}\text{C}$.

8. EVIDENCE FOR DECCAN VOLCANISM

Gerta Keller, a geoscientist and paleontologist, has challenged the prevailing asteroid impact hypothesis for the Cretaceous–Paleogene extinction event (Keller, 2025). She emphasized that linking volcanism to climate warming and the K-Pg mass extinction requires reliable proxies for volcanic emissions alongside complete sedimentary records with biostratigraphy and chemostratigraphic data. Stratigraphic mercury (Hg) has emerged as a powerful proxy, since volcanic eruptions are the primary natural source of atmospheric mercury. The identification of Hg anomalies in late Permian sediments, coinciding with a large igneous province eruption, was a breakthrough in extinction research. A study by Gerta Keller and colleagues on the Elles sections of Tunisia, the auxiliary GSSP to El Kef, shows that massive eruptions of the Deccan Traps in India during the final 25,000 years of the Cretaceous caused extreme climate disruption (Keller et al., 2020). These eruptions released gases that triggered hyperthermal warming, ocean acidification, and toxic conditions, surpassing life's limits and driving rapid mass extinction including non-avian dinosaurs. Evidence includes the world's longest lava flows, stretching over 1,000km from the main Deccan province across India into Bay of Bengal, and mercury spikes found in sediments both in India and Tunisia. The data reveal that repeated extreme eruptions led to long-term global warming (in chron C29r) and short-term hyperthermal events just before the end-Cretaceous mass extinction. Myers and colleagues presented the first coupled biogenic carbonate clumped isotope temperatures and mercury concentrations from a geographically diverse set of marine mollusc fossils. The marine fossils provide evidence of a concurrent rise in coastal marine temperatures and mercury concentrations on a global scale, which seem to be linked to emissions of volcanic CO₂ and mercury. These findings provide further evidence that Deccan volcanism played a significant role in the mass extinctions occurring at the K-Pg boundary. Together, these findings strongly support Deccan volcanism as a primary cause of climate change and

mass extinction (including non-avian dinosaurs) at the K-Pg boundary. To further substantiate this evidence, the Laki eruption of 1783 in Iceland serves as a case study examining volcanism's impact on climate perturbations. Chenet and colleagues modeled sulphate aerosol dispersal from the 1783 Laki eruption in Iceland, demonstrating close correspondence with historical accounts of aerosol transport and hemispheric haze (Chenet et al., 2005). The study demonstrates atmospheric models' capacity to scale toward predicting climatic impacts of larger volcanic events, such as the Deccan Traps eruptions.

The climatic consequences of volcanism are principally governed by sulphur-rich gas release, with flood basalt events sustaining elevated sulphur aerosol concentrations through prolonged degassing. The Laki eruption emitted approximately 42 billion tons (14 km³) of basaltic lava along with substantial fluxes of hydrofluoric acid and sulphur dioxide. These emissions devastated Iceland's agriculture, killing over half of the livestock population and causing a famine that claimed at least one-fifth of the human population. While Laki's impacts were regionally catastrophic, they also produced significant climatic anomalies beyond Iceland. In contrast, the Deccan Traps eruptions expelled lava volumes on the order of 100,000 times greater, releasing massive amounts of CO₂ and SO₂ that likely drove global environmental disruption and contributed to mass extinction. Thus, while Laki exemplifies a short-lived fissure eruption with severe regional and limited global impacts, the Deccan volcanism represents a prolonged flood basalt event of continental scale with profound planetary consequences. However, the synergistic impacts of the Deccan volcanism and the Chicxulub impact continue to be debated by the active researchers in the subject of mass extinctions at K-Pg boundary.

9. GLOBAL ENVIRONMENTAL CONSEQUENCES

The major catastrophes believed to have triggered global effects. Massive dust clouds were likely thrown into the atmosphere, plunging the planet into prolonged darkness and cutting off sunlight. This disruption devastated marine ecosystems by eliminating photosynthetic plankton, collapsing food webs, and potentially reducing the oceans to a state dominated by single-celled organisms. Additional consequences may have included acid rain and severe climate fluctuations. Survival rates differed widely across species. Creatures inhabiting open water were hit harder than those living on or within the seafloor. The omnivores, insect-eaters, and scavengers fared better than species dependent on strict diets like herbivory or carnivory, as decaying organic matter became a more reliable food source. Crocodilians, for instance, endured due to their ability to scavenge, survive long periods without eating, and provide young with access to invertebrates and carrion.

9.1 Cenozoic Era

The Cenozoic Era marks a period of recovery and rapid diversification after the K-Pg extinction. It is defined by the evolutionary dominance of mammals and birds and the development of modern ice age cycles.

9.2 Paleogene and Neogene Periods

The Cenozoic Era is commonly known as the "Age of Mammals." In the aftermath of the K-Pg extinction, mammals experienced a sweeping adaptive radiation, giving rise to diverse new lineages including horses, whales, bats, and primates. Likewise, the few avian dinosaurs that survived mainly species of ground and waterfowl expanded into the wide variety of bird species alive today. The disappearance of dominant Cretaceous groups, such as non-avian dinosaurs, left behind numerous unoccupied ecological niches. This sudden availability of ecological space created extraordinary opportunities for survivors, especially mammals and birds, to diversify and evolve rapidly. The pattern demonstrates a central principle of macroevolution: large-scale environmental upheavals, though destructive, can spark bursts of evolutionary innovation, paving the way for new dominant life forms and redirecting the biosphere's course.

9.3 Quaternary Period

The Quaternary Period marks the start of the present series of ice ages. Throughout this time, atmospheric concentrations of CO₂ and methane have shifted in step with glacial cycles rising during warm interglacial phases and falling during colder glacial intervals (Petit et al., 1999).

10. FOSSIL EVIDENCE FOR RECENT CLIMATE SHIFTS

Fossils serve as tangible connections to the past, offering crucial insights into Earth's climate history across millions of years. Paleoclimatology, the study of ancient climates depends extensively on fossils and other geological proxies to reconstruct environmental conditions.

a. *Ice cores*: Cylinders of compacted ancient ice, extracted from Antarctica, Greenland, and mountain glaciers, preserve trapped gases, dust, and volcanic ash from past atmospheres. They offer detailed climate records stretching back nearly 800,000 years, capturing the cycles of ice ages and interglacial periods (Petit et al., 1999).

b. *Foraminifera and oxygen isotopes*: Microscopic marine organisms with CaCO₃ shells provide powerful records of ocean conditions. Fossilized foraminifera reveal past temperatures, salinity, and sea levels through the ratios of oxygen isotopes (¹⁸O/¹⁶O) in their shells. During ice ages, more ¹⁶O is stored in glaciers, enriching the oceans and shells with ¹⁸O. In warmer times, melting ice releases ¹⁶O back into the sea, lowering ¹⁸O concentration. These isotopic signatures allow scientists to reconstruct past ocean temperatures and ice sheet size, offering vital checks for climate models and insights into glacial-interglacial cycles.

c. *Speleothems (Stalactites and Stalagmites)*: Cave formations of CaCO₃ grow in layers that record oxygen isotope variations, complementing ice core data as another archive of past climates.

d. *Plant fossils*: Remains of leaves, pollen, and wood reveal vegetation types that once thrived, providing evidence of past temperature and rainfall patterns. For instance, coal deposits in the Arctic indicate that the region was once humid and warm enough to support dense plant life.

e. *Marine fossils*: Coral reef fossils found outside the tropical zones signal warmer past climates. Shifts in marine fossil groups and sedimentary structures document changes in sea level, ocean chemistry, and circulation. Ammonites provide key insights into ancient ocean conditions.

f. *Vertebrate and insect fossils*: Animal and insect remains, from dinosaurs and mammals to beetles and mosquitoes, serve as indicators of temperature and humidity.

g. *Multi-proxy approach*: The most reliable reconstructions of past climates come from combining multiple evidence sources ice cores, ocean sediments, speleothems, tree rings, and fossils. This integrated strategy strengthens climate models and deepens understanding of the forces behind Earth's long-term climate shifts.

II. PALEOENVIRONMENTAL RECONSTRUCTION THROUGH THE FOSSIL RECORD

Paleoclimatic reconstruction employs integrated methodologies. Early discovery and collection procedures are followed by temporal constraint through radiometric dating and biostratigraphy correlation (Gradstein et al., 2020). Subsequent morphological and compositional analyses produce data amenable to environmental interpretation. Environmental reconstruction proceeds from the principle that organismal morphology and distribution reflect adaptive responses to local conditions. The presence of cold-adapted taxa in presently temperate latitudes indicates substantial climatic reorganization, while the distribution of ungulate assemblages (such as gazelle populations) serves as a proxy for grassland extent during specific temporal intervals. Geochemical methods have proven particularly informative. Oxygen isotope ratios ($\delta^{18}\text{O}/\delta^{16}\text{O}$) preserved in biogenic carbonates provide quantitative constraints on paleotemperatures, while carbon isotope signatures ($\delta^{13}\text{C}$) in organic residues document perturbations in biogeochemical cycling, notably during the end- Permian and end Cretaceous mass extinction events (Alvarez et al., 1980; Raup and Sepkoski, 1982). Morphometric approaches quantify phenotypic variation as a function of environmental forcing, while palaeoecological reconstruction at the community level illuminates ecosystem responses to climatic stress. Taxonomic shifts within fossil assemblages, coupled with sedimentological indicators such as shoreline deposits and turbidite sequences, constrain interpretations of relative sea level and ocean chemistry. The

occurrence of shallow-marine taxa within bathyal sediments signals transgressive episodes or modifications in circulation patterns.

12. PLATE TECTONICS AS A PRIMARY DRIVER OF ENVIRONMENTAL CHANGE

Continental drift represents a fundamental control on Earth's environmental evolution, mediating climate dynamics, landscape development, and biotic diversification across geological timescales. Operating over 10^6 - 10^7 year intervals, plate motion has continuously modified continental configuration, oceanic and atmospheric circulation, and biogeographic patterns.

12.1 Biogeographic evidence for continental drift

The distribution of identical fossil taxa across currently separated continents provided early support for plate tectonic theory. The distribution of *Glossoptris* flora and *Lystrosaurus* fauna across Gondwanan fragments demonstrated previous continental continuity. These patterns indicate that species dispersal occurred when landmasses remained connected, prior to fragmentation through rifting. Subsequent isolation of populations on diverging continents created conditions for allopatric speciation under differential environmental selection, illustrating plate tectonics as a first-order control on macroevolutionary patterns and global biodiversity structure.

12.2 Climatic and Oceanographic consequences

Plate tectonic processes exert profound influence on global climate through multiple mechanisms. Continental reconfiguration, supercontinent cycles, and orogenic events continuously reshape atmospheric and oceanic circulation patterns, thereby modifying heat and moisture distribution (Bondarenko and Utescher, 2024; Ou, 2024). The fragmentation of Rodinia near 750Ma dispersed continental masses into tropical latitudes, enhancing silicate weathering rates. This process sequesters atmospheric CO₂ through the formation of calcium carbonate precipitates on the seafloor, initiating severe glaciation events documented as Neoproterozoic "Snowball Earth" episodes.

12.3 Long-term environmental forcing

The geological record documents plate tectonics as the dominant driver of environmental change over 10^7 - 10^8 year timescales. Supercontinent assembly and dispersal cycles reorganized global geography while transforming atmospheric circulation, ocean current systems, and meridional temperature gradients. As continents migrate across climate zones, ecosystems experience disruption, forcing species migration, adaptation, or extinction (Liu et al., 2024). Orogenic uplift exposes fresh silicate surfaces to chemical weathering, drawing down atmospheric CO₂ and promoting long-term cooling. These feedbacks between tectonics, atmospheric composition, and biospheric evolution regulate Earth's climate system and govern the spatiotemporal distribution of biological diversity.

13. FOSSIL RECORD AS ARCHIVE AND WARNING

The fossil record constitutes Earth's principal archive of biosphere-environment interactions spanning 4Ga. Throughout this interval, life has both responded to environmental forcing and, critically, acted as an agent of planetary change modifying ocean chemistry, atmospheric composition, and climate trajectories. From the oxygenation of Archean oceans via cyanobacterial metabolism to CO₂ drawdown associated with Devonian Forest expansion, biological processes have repeatedly transformed Earth's physical systems (Holland, 2002). The Anthropocene marks a fundamental reversal: human activity now functions as a geological forcing agent, driving system-level changes at rates exceeding those documented in most fossil record (Xie, 2023). The paleontological archive demonstrates that environmental equilibrium represents a transient condition and that biospheric recovery from major perturbations operates on 10^6 year timescales (Friedman, 2023). Deep time offers both a cautionary record and a conceptual framework, demonstrating that although the planet endures through profound environmental transitions, the persistence of complex ecosystems is contingent upon the stewardship choices made in the present.

References

Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. *Science*, 208(4448), pp.1095-1108

Bondarenko O.V. and Utescher T. (2024). Early Paleogene precipitation patterns over East Asia: Was there a monsoon after all? *Palaeobio Palaeoenviron.*, 104: 1-28. doi:10.1007/s12549-023-00586-y

Chenet, A.I., Fluteau, F. and Courtillot, V. (2005). Modelling massive sulphate aerosol pollution following the large 1783 Laki basaltic eruption. *Earth science and Planetary Letters*, 236, pp.721-731

Friedman M. (2023). Selectivity of mass extinctions: Patterns, processes, and future directions. *Cambridge Prisms: Extinction*. Online 09 May 2023. doi: 10.1017/ext.2023.10.pr9

Keller, G., Mateo, P., Monkenbusch, J., Thibault, N., Punekar, J., Spangenberg, Jorge E., Abramovich, S., Blair Schoene, Sarit Ashkenazi-Polivoda, Eddy, M.P., Samperton, Kyle M., Khadri, Syed F.R., Adatte, T. (2020). Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. *Global and Planetary Change*, 194, pp. 103332

Keller, G. (2025). *The Last Extinction. The real science behind the death of the Dinosaurs*. Published by Diversion books, p.320

Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M. (2020). *Geologic Time Scale 2020*. Elsevier

Holland, H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. *Geochimica et Cosmochimica Acta*, 66(21), pp.3811-3826

Liu R., Ohashi H., Hirata A., Tang L., et al. (2024). Predicting the Global Extinction Risk for 6569 Species by Applying the Life Cycle Impact Assessment Method to the Impact of Future Land Use Changes. *Sustainability*, 16(13), p.5484. doi:10.3390/su16135484

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., ... and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature*, 399(6735), 429-436

Ou H.-W. (2024). Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift. *Glaciers*, 1(1), pp.19-34. doi:10.3390/glacies1010003

Racki, G. (2012). The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. *Acta Palaeontologica Polonica*, 57 (4), pp.681– 702

Raup, D. M. and Sepkoski Jr, J. J. (1982). Mass extinctions in the marine fossil record. *Science*, 215(4539), pp.1501-1503

Xie S. (2023). Deep-time mass extinction helps understand the current biotic crisis. *National Science Review*, 11(1). doi:10.1093/nsr/nwad322